

Preet Baxi

+1 (734) 596-6778 | preetb@umich.edu | www.preetbaxi.com | www.linkedin.com/in/preet-baxi | [Google Scholar](#)

SUMMARY

Innovative Data Scientist and **Algorithm Developer** with **5+** years of experience. Proven expertise in **scientific computing**, building and optimizing complex data pipelines, business data analysis and developing algorithms using **Python, C++, MATLAB, R, Parallel Computing, data structures** and **machine learning techniques**.

EDUCATION

PhD in Physics and Scientific Computing (CGPA: 3.55/4) Aug. 2022 – Sep. 2026 (Expected)
University of Michigan - Ann Arbor, MI, USA

EXPERIENCE

Graduate Student Research Assistant (GSRA) Jan. 2025 – Present
Prof. Stefanus Jasin, University of Michigan - Ann Arbor, MI, USA

- Developed a **universal AI-assisted heuristic-generation framework** for **stochastic inventory optimization**, enabling language-model agents to autonomously design and refine decision policies under demand uncertainty, fully adaptable to parameter changes without code modification.
- Improved heuristic efficiency** by **38 %** and **reduced expected total-cost variance** across simulation trials through adaptive parameterization and optimizers. ([Final Draft ready for publication](#))
- Conducting an **experimental study on prompt-injection behavior** in LLM-based résumé evaluation, examining how manipulative instructions affect model reasoning and ranking in single- and multi-prompt settings.

Graduate Student Research Assistant (GSRA) Jul. 2022 – Dec. 2024
Prof. Keith Riles, University of Michigan - Ann Arbor, MI, USA

- Devised a unique **“Grouped semi-coherent search algorithm”** to detect continuous GW signals from high spin-down neutron stars using **Python**, and **FFT-based data segmentation** techniques, achieving improved **(50 %) detection statistic** by balancing computational cost through **template spacing** and parameter optimization.
- Architected scalable algorithms using Python, C, **machine learning techniques**, and **parallel computing** for data generation, signal detection, and hardware monitoring, achieving **95 % accuracy** in pulsar filtering and enhancing detector calibration using **data structures, SFT and F Statistic methods**, and **matched filtering**.

LIGO Fellow (Visiting Student Researcher, Caltech) Jan. 2024 – Jul. 2024
Laser Interferometer Gravitational-wave Observatory (LIGO) – Richland, WA, USA

- Engineered **machine learning-based** search and diagnostic algorithms using **scikit-learn** and **TensorFlow** to analyze over **200+ electronic channels**, employing advanced anomaly detection models to isolate and resolve **4** previously **undetected noise sources**, improving overall system **performance by 45 %** and reducing error rates.
- Designed and validated **predictive models** simulating analog voltage propagation by optimizing filter configurations and data sampling strategies, resulting in a **60 % improvement** in **signal processing** accuracy and robust noise mitigation across complex datasets to characterize a new Anti-Aliasing chassis instrument.

Research Student (Indian Academy of Sciences Fellow) May. 2019 – Jun. 2022
Prof. Chandrakant Mishra, Indian Institute of Technology (IIT) Madras – Chennai, TN, India

- Formulated and optimized **parameter estimation algorithms** using **Cramer Rao bounds** and advanced **Monte Carlo techniques** to achieve a **97 % accuracy rate** in extracting source properties across various detector systems.
- Accelerated data analysis and visualization **speeds by 30 %** by designing **custom algorithms** based on **Bayesian Statistical Methods**, leading to faster and more reliable research outcomes.

PROJECTS

AI-Driven Trading Platform from Financial News

- Built an end-to-end automated trading system that ingests *real-time financial headlines*, applies NLP-based *sentiment scoring*, and runs *predictive models* to forecast *short-term market movements*. Integrated API-linked brokers for autonomous order execution. Back tests demonstrated a **20 % improvement in Sharpe ratio** and **consistent alpha generation** across multiple market regimes.

Enhancing Minesweeper Solvers with Parallel Computing: A Deep Dive into CUDA and OpenMP Implementations

- Innovated parallel Minesweeper solvers using *CUDA* and *OpenMP* to optimize game performance, achieving up to **1769x speedup** over the sequential version by leveraging GPU and multi-threaded CPU architectures for efficient mine detection, game state propagation, and synchronization management.

Characterizing the Detection Capabilities and Reach of Supermassive Binary Black Holes in the LISA Frequency Band

- Crafted and implemented *numerical simulation models* and *signal processing algorithm* using *Python* and *LALSuite* to model and analyze gravitational wave signals, using *data visualization* to evaluate detection accuracy and optimize parameter estimation for Super-massive Binary Blackholes in LISA band.

PUBLICATIONS AND PRESENTATIONS

- **P. Baxi** and K. Riles, “*Hardware Injection Monitoring Updates during O4a and improvements from O3*”, (Sent for paper publication in Classical Quantum Gravitation Journal.).
- Divyajyoti, **P. Baxi**, CK Mishra, KG Arun, “*Detectability of gravitational higher order modes in the third-generation era*”, *Physical Review D Journal*, **104**, 084080 – October 2021, <https://doi.org/10.1103/PhysRevD.104.084080>.
- **P. Baxi**, R. Jain, Y. Dhadke, Y. Chhabra and V. H. Khatawate , “*Design and Analysis of Bell-Parabolic De Laval Rocket Exhaust Nozzle*”, *IEEE - ICNTE – July 2021*, <https://doi.org/10.1109/ICNTE51185.2021.9487717>.

LEADERSHIP EXPERIENCE

Team Lead and Aerodynamics Head – DJS Skylark – Aeromodelling team – SAE Aero Design East Competition

- Led a team of **30** to design and build *RC aircraft*, implementing innovative techniques that reduced *assembly time to 10 seconds* and increase *loading capacity by 11 units*, securing **2nd place** globally.

SKILLS and INTERESTS

- *Programming and Software Development*: Python, MATLAB, C/C++, R, SQL, Mathematica, HTML, Fortran, algorithm design, data structures, numerical computing, and object-oriented programming
- *Data Analysis and Visualization*: Pandas, NumPy, SciPy, Matplotlib, Seaborn, data wrangling, exploratory data analysis, time-series analytics, correlation modeling, feature engineering, and statistical visualization
- *Quantitative Modeling and Machine Learning*: TensorFlow, PyTorch, Scikit-Learn, Keras, XGBoost; time-series forecasting, predictive analytics, reinforcement learning, anomaly detection
- *Statistical and Computational Techniques*: Bayesian inference, Monte Carlo simulation, stochastic optimization, regression modeling, hypothesis testing, Scientific Computing
- *Finance and Trading*: Algorithmic trading systems, portfolio optimization, market microstructure analysis
- *High Performance Computing*: CUDA, MPI, OpenMP
- *Tools and Others*: SolidWorks, Ansys, RPA, XFLR, Hyper Mesh, LaTeX, MS Office
- *Operating Systems*: Unix/Linux, macOS, Windows
- *Professional Skills*: Problem-Solving, Analytical Thinking, Collaboration and Communication, Leadership and Teamwork, Technical Writing, Documentation, Strategy Development, Creativity and Innovation
- *Private Pilot in Training*