

Preet Baxi

+1 (734) 596-6778 | preetb@umich.edu | www.preetbaxi.com | www.linkedin.com/in/preet-baxi | [Google Scholar](#)

SUMMARY

Quantitative Researcher and **Ph.D. Candidate in Physics and Scientific Computing** at the **University of Michigan** with over **5 years** of experience in **statistical modeling, stochastic optimization, algorithm development**, and **data-driven** decision frameworks using **Python/C++/R**. Proven record of building high performance inference pipelines and machine-learning systems for **signal extraction, uncertainty estimation**, and **algorithmic trading**.

EDUCATION

PhD in Physics and Scientific Computing (CGPA: 3.55/4) Aug. 2022 – Sep. 2026 (Expected)
Master of Science in Physics
University of Michigan - Ann Arbor, MI, USA

EXPERIENCE

Graduate Student Research Assistant (GSRA) Jan. 2025 – Present
Prof. Stefanus Jasin, University of Michigan - Ann Arbor, MI, USA

- Building an end-to-end automated trading system that ingests **real-time financial headlines**, applies NLP-based **sentiment scoring**, and runs **predictive models** to forecast **short-term market movements**. Integrated API-linked brokers for autonomous order execution. Back tests demonstrated a **20 % improvement in Sharpe ratio** and **consistent alpha generation** across multiple market regimes. [\(Personal Project\)](#)
- Conducting an **experimental study on prompt-injection behavior** in LLM-based résumé evaluation, examining effects of manipulative instructions; relevant to **model-risk and robustness assessment** in AI-driven trading.
- Developed a **universal AI-assisted heuristic-generation framework** for **stochastic inventory optimization**, enabling language-model agents to autonomously design and refine decision policies under demand uncertainty; transferable to **policy-generation and reinforcement-learning strategy design** in finance.
- Improved heuristic efficiency** by **38 %** and **reduced expected total-cost variance** across simulation trials through adaptive parameterization and optimizers. [\(Final Draft ready for publication\)](#)

Graduate Student Research Assistant (GSRA) Jul. 2022 – Dec. 2024
Prof. Keith Riles, University of Michigan - Ann Arbor, MI, USA

- Designed **multi-parameter signal-extraction algorithms** for weak time-series detection — conceptually parallel to **alpha-signal discovery under low-SNR conditions** in quant finance. Improved detection statistic by **50 %** via FFT-based segmentation and parameter optimization balancing computational cost and model variance.
- Architected **high-throughput simulation pipelines** in Python and C using **machine learning and parallel computing (MPI/OpenMP)**. Achieved **95 % classification accuracy** in signal filtering and enhanced estimation precision through Bayesian calibration: approach analogous to **factor model tuning and noise reduction** in market data.

LIGO Fellow (Visiting Student Researcher, Caltech) Jan. 2024 – Jul. 2024
Laser Interferometer Gravitational-wave Observatory (LIGO) – Richland, WA, USA

- Developed **machine-learning-based anomaly-detection models** (TensorFlow, scikit-learn) using **Python** for 200+ sensor channels to identify systemic bias and non-stationary noise, improving signal quality by **45 %**; comparable to **regime-shift detection** in financial time series.
- Created **predictive filter-optimization frameworks** that modeled signal propagation and noise suppression, yielding **60 % improvement in forecast accuracy**: similar to **volatility forecasting and model regularization**.

Research Student (Indian Academy of Sciences Fellow)

May. 2019 – Jun. 2022

Prof. Chandrakant Mishra, Indian Institute of Technology (IIT) Madras – Chennai, TN, India

- Designed and optimized **parameter-estimation algorithms** using **Cramér-Rao bounds** and **Monte Carlo simulation**, achieving **97 % estimation accuracy**: analogous to **variance-bias trade-off** and **uncertainty quantification** in risk models.

PUBLICATIONS

- **P. Baxi** and K. Riles, “*Hardware Injection Monitoring Updates during O4a and improvements from O3*”, (Sent for paper publication in Classical Quantum Gravitation Journal.).
- Divyajyoti, **P. Baxi**, CK Mishra, KG Arun, “*Detectability of gravitational higher order modes in the third-generation era*”, **Physical Review D Journal**, **104**, 084080 – October 2021, <https://doi.org/10.1103/PhysRevD.104.084080>.

SKILLS and INTERESTS

- **Programming and Software Development:** Python, MATLAB, C/C++, R, SQL, Mathematica, algorithm design, data structures, numerical computing, and object-oriented programming
- **Data Analysis and Visualization:** Pandas, NumPy, SciPy, Matplotlib, Seaborn, data wrangling, exploratory data analysis, time-series analytics, correlation modeling, feature engineering, and statistical visualization
- **Quantitative Modeling and Machine Learning:** TensorFlow, PyTorch, Scikit-Learn, Keras, XGBoost; time-series forecasting, predictive analytics, reinforcement learning, anomaly detection
- **Statistical and Computational Techniques:** Bayesian inference, Monte Carlo simulation, stochastic optimization, regression modeling, hypothesis testing, Scientific Computing
- **Finance and Trading:** Algorithmic trading systems, portfolio optimization, market microstructure analysis
- **High Performance Computing:** CUDA, MPI, OpenMP
- **Operating Systems:** Unix/Linux, macOS, Windows
- **Professional Skills:** Problem-Solving, Analytical Thinking, Collaboration and Communication, Leadership and Teamwork, Technical Writing, Documentation, Strategy Development, Creativity and Innovation